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ABSTRACT

In vivo observation and tracking of cell division in the Ara-
bidopsis thaliana root meristem, by time-lapse confocal

microscopy, is central to biology research. The research

herein described is based on large amount of image data,

which must be analyzed to determine the location and state

of cells. The possibility of automating the process of cell

detection/marking is an important step to provide research

tools to the biologists in order to ease the search for a special

event as cell division. This paper discusses an automatic cell

segmentation method, which selects the best cell candidates

from a starting watershed based image segmentation. The

selection of individual cells is obtained using a Support Vec-

tor Machine (SVM) classifier, based on the shape and edge

strength of the cells’ contour. The resulting segmentation is

largely pruned of badly segmented cells, which can reduce

the false positive detection of cell division. This is a good

result on its own and a starting point for improvement of cell

segmentation methodology.

Index Terms— Biomedical image processing, Image

processing, Image segmentation, Biological cells

1. INTRODUCTION

Cell division in plants is greatly concentrated in specialized

regions known as meristems [1]. In the Arabidopsis, the most

important meristem is located at the tip of the root and perpet-

uates its pattern by cellular division. The stem cells, located

in the root meristem, gives rise to all the cell types of the root

by regular patterns of cell division. However, the mechanism

by which cell division is controlled is not completely under-

stood, what motivates in vivo research of plant cell division.

Development biologists studying roots find difficult to

cope with the lack of suitable technology to analyze root

meristem growth in vivo [1]. The great amount of data pro-

duced requires the development of image analysis tools to

automatically extract useful information, such as identifying

cell division and growth.
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Many studies focus on the analysis of Arabidopsis devel-

opment. Cell growth is analyzed using different approaches,

such as mathematical models [2] and motion estimation meth-

ods [3]. The relation between cell division and elongation in

the regulation of organ growth rate is also investigated [4].

These researches show that in vivo imaging of the root is a

valuable tool. Furthermore, cell features should be extracted

to be processed statistically, and an easy way to track these

individual cells should be provided.

The first step for automated cell division identification is

cell segmentation in the plant images. Segmentation is a dif-

ficult problem in computer vision and is, in this application,

made worse by image acquisition process, data’s variability

and noise. There is a need for segmentation methodologies

that can estimate the resulting segmentation’s quality and use

that knowledge to recover from errors. We present a step in

that direction by designing a method that selects well seg-

mented cells from a set of possible segmented regions.

This paper is organized as follows: Section 2 describes

the in vivo image data acquisition. Section 3 describes the

proposed approach. Section 4 presents and discusses the ob-

tained results. Finally, conclusion is presented in Section 5.

2. IMAGE ACQUISITION

The database used in this work was obtained using an auto-

mated confocal microscope image-acquisition process. The

motorized stage of the microscope is controlled to compen-

sate the root’s growth, as described in [5]. The time duration

of the experiments ranged from 10 hours to more than a day,

being images acquired every 10 minutes. To be able to acquire

in vivo images of the plant root, Green Fluorescence Protein

(GFP) markers were used to allow the visualization of the cell

wall. When excited with a laser wavelength of its excitation

spectrum, this protein emits light in the emission spectrum.

One problem with this type of image acquisition is the

bleaching of the images caused by the degradation of the fluo-

rescent protein compound (Fig.1). This degradation is caused

by the laser flash used to image the cells and increases with
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Fig. 1. Examples where the bleaching effect can be seen, spe-

cially in the center and in the tip of the root. As more images

are collected, the contrast (and definition) decrease.

the number of exposures and the individual exposure time.

3. METHODOLOGY

In this section we present the proposed methodology to select

the best cells from the segmentation of a plant image. Each

possible region from the segmentation is classified based on

the shape similarity to human selected cells’ contours.

Our system has three main stages: image pre-processing,

image segmentation and classification. Within each stage

there are tasks that must be performed:

• Pre-processing: image registration and filtering;

• Segmentation: watershed segmentation, contour extrac-

tion and description;

• Classification: Support Vector Machine (SVM) contour

classification.

This system is novel in its structure and introduces novel parts

such as collaborative filtering and SVM cell contour classifi-

cation.

3.1. Image registration
The direction of the root in the acquired images is not con-

stant, due to the irregular growth of the root. However, for a

similar description of the cell contours, we require the root to

have the same approximate orientation in all the images. To

obtain a normalized image Ir from each input image I with

relation to rotation, we compute the central line of the root in

the image and rotate the image so that the root is vertical with

the tip in the upwards direction. The central line estimation is

obtained using the method described by Garcia et al. [5].

3.2. Image Filtering
The images I resulting from confocal-microscopy have a high

level of noise. This is a consequence of the reduced time of

exposure, necessary to avoid excessive bleaching (Fig.1). To

improve the quality of the images, prior to segmentation we

need to use a noise filtering method. The resulting image Ifilt

will have a better level of information,

Ifilt = F(Ir, σ
2
filt), (1)

where F is the noise reducing image filter and σ2
filt is the

variance of the assumed noise in the image. Larger σ2
filt val-

Noisy image Anisotropic Filt. BM3D Filt.

Fig. 2. Comparison of the result of filtering a noisy im-

age with each different method (image crop detail). The

BM3D [7] method eliminates more noise while better pre-

serving image details.

ues will result in a smoother image, leading to a segmenta-

tion with fewer but larger regions (Fig.3). Two filtering meth-

ods were considered: anisotropic image filtering [6] and de-

noising by sparse 3D transform-domain collaborative filtering

(BM3D) [7]. Visual inspection of results using both tech-

niques in a large number of images led to the choice of the

latter due to better results, see Figure 2.

3.3. Watershed segmentation

In order to segment the cells, we apply a watershed transform

to the filtered images Ifilt. The classical watershed transform

is based on immersion simulation. The input gray-scale im-

age is considered as a topographic surface which is flooded

by water starting from regional minima. Watershed lines are

formed on the meeting points of water coming from distinct

minima [8]. The resulting segmentation is the set of n regions

Ri (i = 1, ..., n) obtained from the watershed transform.

Usually the direct application of the watershed transform

to an image leads to over-segmentation. It is caused by the

fact that there are more image minima than objects, that is, not

all minima really represent true objects, due to noise [9]. In

the Arabidopsis confocal images, cells have bright walls sur-

rounding a dark non-homogeneous interior, which can lead to

several minima inside a cell, resulting in over-segmentation.

Traditionally there are two strategies to reduce the over-

segmentation problem. One tries to avoid the over-segmen-

tation before it happens by limiting the number of allowable

regions, often restricting the number of markers [9]. The other

strategy allows over-segmentation to occur and then tries to

repair it, usually by merging adjacent regions [10].

In the Arabidopsis confocal images, it is difficult to es-

tablish a strategy to avoid over-segmentation which remains

valid for a whole experiment. This is due to the variability of

the root size in the image and to the bleaching effect (shown

in Fig.1). Any chosen approach can be adequate for the be-

ginning of the biology experiment’s data, however it can fail

further on in the experiment. Our approach to this problem is

to prune badly segmented regions after the segmentation step.
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Original image σfilt = 20 σfilt = 40

Fig. 3. Watershed segmentation examples based on different

filtering parameters of the original image.

3.4. Contour description

Using the watershed regions Ri derived in the previous step,

we obtain the contour ci of each region Ri by the extraction

of its points, starting from the leftmost one in a clockwise

order. To classify each contour we must first describe them.

As such, we describe each region’s contour by its shape and

underlying image pixel’s edge strength.The shape is charac-

terized by the Discrete Cosine Transform (DCT) of the dis-

tance between each contour point and the contour’s centroid.

The edge strength at the contour’s pixels is characterized by

the phase symmetry measure [11]. This measure has the ad-

vantage of not producing double edges at line contours, and

performs well in low contrast images. The contour descriptor

vector is:

Di = [DCT (‖ci − centroid(ci)‖) PhSym(ci)], (2)

where ‖ci − centroid(ci)‖ is the vector of distances be-

tween each contour point and the contour’s centroid, and

PhSym(ci) is the Phase Symmetry measure of the pixels of

the image at the contour coordinates. In order to have the

same dimension for the obtained descriptor, we resample the

contour to 40 points. This was found to describe the cell’s

shape with enough detail.

3.5. SVM Cell Classification

In order to prune the segmentation obtained with the water-

shed transform, we classify each region Ri into cell Cj or

non-cell, based on its descriptor Di, using a Gaussian kernel

SVM [12]. The classifier training and testing is performed as

follows:

Training: For each image, we applied the segmentation

described in Sec.3.3, using different filtering sigmas σfilt (see

Sec.3.2). For each image we labeled segmentation regions

that correspond to cells in the image and those which are

clearly wrong (non-cell). We do not perform full annotation

since some cases are ambiguous and it is more advantageous

to gather better cell annotation from more images.

Testing: using the SVM model, given a new segmentation

region’s descriptor Di, we can automatically classify that re-

gion as cell Cj or non-cell. Performing this operation for all

regions in the image, we obtain an SVM pruned segmentation

image with all the regions classified as cells (Fig.4(d)).

(a) Original Image (b) Ground truth

(c) Watershed segmentation (d) SVM pruned segmentation

Fig. 4. Original image and resulting segmentation obtained

using the proposed method.

4. RESULTS AND DISCUSSION

We selected images from 16 biological experiments, from

which 9 were used for training and 7 for test. In total, we

used 68 images for training, containing 5125 manually se-

lected cells. For test, 12 images were used, containing 1421

manual segmented cells, used as ground truth for evaluation

of the method.

Applying the methodology described in the previous sec-

tion we obtain an image with an SVM pruned cell segmenta-

tion (Fig.4(d)). In this section we compare the SVM pruned

result with the direct result of the watershed segmentation

(corresponding to all regions Ri being considered cells Cj).

For an objective evaluation of the cell segmentation re-

sults, we map each region classified as cell Cj to the best fit-

ting ground truth region GTk from the manual segmented im-

age (Fig.4(b)). To obtain this mapping we use the F-measure,

also known as coverage measure, defined by:

F (Cj , GTk) =
2ν(Cj , GTk)ρ(Cj , GTk)

ν(Cj , GTk) + ρ(Cj , GTk)
, (3)

where ν is precision and ρ is recall, defined by:

ν(Cj , GTk) =
Cj

⋂
GTk

Cj
, ρ(Cj , GTk) =

Cj

⋂
GTj

GTk
(4)

Cell regions Cj are mapped to GTk if the F-measure be-

tween them F (Cj , GTk) is above a certain threshold th. For

the evaluation presented here, we consider th = 0.6. If there

is one and only one cell region Cj mapped to a ground truth

GTk, we consider that cell region Cj as well classified. It is

important to notice that, due to the poor image quality, the
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Table 1. Comparison between the number of cells correctly

returned by SVM classification and the watershed segmenta-

tion. Results for all cells in the 12 testing images. All num-

bers are averaged values over all images.
method watershed SVM

σfilt 20 30 40 20 30 40

F-measure 0.817 0.821 0.825 0.831 0.836 0.837

FP 156.7 123.5 107.5 61.7 57.3 51.1

FN 25.8 24.7 26.9 64.6 52.9 51.8

performance 0.38 0.43 0.46 0.51 0.55 0.56
.

ground truth annotation does not normally cover the whole

root in the image (Fig.4(b)).

To objectively measure each approach’s performance,

we calculate several segmentation and classification mea-

sures:

• F-measure: evaluates the segmentation fitting;

• False positive (FP), False negative (FN): evaluates the

type of classification errors;

• Performance: the ratio of correctly classified cells re-

gions according to the ground truth.

All measures were calculated for each image and averaged

over all images. The results are presented in Table 1.

We can conclude that, using our approach, we are able to

greatly reduce false positives (at least 50% reduction) and cre-

ate a segmentation which has a greater percentage of correctly

segmented regions (at least 10% higher). It is also important

to emphasize that we obtain an increase of the F-measure with

the SVM pruned segmentation (1.5% approx.), even if it does

not actually modify the segmentation of individual cells. This

improvement in the F-number indicates that by using an SVM

classifier we are able to correctly select the best cells.

5. CONCLUSION

In this work we introduced an approach to automatically se-

lect the segmentation of cells in plant confocal microscopy

using an SVM classifier. Using this approach we are able

to prune most of the wrongly segmented cells improving the

performance of the resulting segmentation.

One major difficulty in this work is that the watershed

segmentation from which we start contains a high percent-

age of miss-segmented cells, which we cannot recover from.

Another point is that the SVM classifier does not take into

account any information about the cell neighborhood. Fu-

ture work will include a wrapper methodology in which we

use the SVM classified cells to improve the base segmenta-

tion obtained with the watershed transform and include cell

neighborhood information to improve classification.
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